Типоразмеры воздуховодов прямоугольные. Воздуховоды систем вентиляции. Размеры воздуховодов вентиляция


Стандартные диаметры круглых воздуховодов.

Основные, мм

100

125

160

200

250

315

400

500

630

800

1000

Промежуточные, мм

110

140

180

225

280

355

450

560

710

900

1120

(продолжение)

Основные, мм

1250

1600

2000

Промежуточные, мм

1120

1400

1800

Номограмма для быстрого подбора диаметра приведена на рисунке ниже. Способ пользования номограммой показан стрелками. Промежуточные диаметры не подписаны.

Если предусматриваются квадратные воздуховоды, вычисляется сторона квадрата , мм, которая округляется до 50 мм. Минимальный размер стороны равен 150 мм, максимальный – 2000 мм. При использовании номограммы получаемый по ее данным ориентировочный диаметр следует умножить на. При необходимости применения прямоугольных воздуховодов размеры сторон подбираются также по ориентировочному сечению, т.е. чтобыa×b≈fор, но с учетом того, что отношение сторон, как правило, не должно превышать 1:3. Минимальное прямоугольное сечение составляет 100×150 мм, максимальное – 2000×2000, шаг – 50 мм, так же, как и у квадратных.

2.2. Расчет аэродинамических сопротивлений.

После выбора диаметра или размеров сечения уточняется скорость воздуха: , м/с, гдеfф– фактическая площадь сечения, м2. Для круглых воздуховодов, для квадратных, для прямоугольныхм2. Кроме того, для прямоугольных воздуховодов вычисляется эквивалентный диаметр, мм. У квадратных эквивалентный диаметр равен стороне квадрата.

Далее по величине vфиd(илиdэкв) определяются удельные потери давления на трениеR, Па/м. Это можно сделать по таблице 22.15 [1] или по следующей номограмме (промежуточные диаметры не подписаны):

Можно также воспользоваться приближенной формулой . Ее погрешность не превышает 3 – 5%, что достаточно для инженерных расчетов. Полные потери давления на трение для всего участкаRl, Па, получаются умножением удельных потерьRна длину участкаl. Если применяются воздуховоды или каналы из других материалов, необходимо ввести поправку на шероховатость βш. Она зависит от абсолютной эквивалентной шероховатости материала воздуховода Кэи величиныvф.

Абсолютная эквивалентная шероховатость материала воздуховодов [1]:

Материал

Сталь,

винипласт

Асбест

Фанера

Шлако-

алебастр

Шлако-

бетон

Кирпич

Штукатурка по сетке

Кэ, мм

0.1

0.11

0.12

1

1.5

4

10

Значения поправки βш [1]:

Vф, м/с

βшпри значениях Кэ, мм

1

1.5

4

10

3

1.32

1.43

1.77

2.2

4

1.37

1.49

1.86

2.32

5

1.41

1.54

1.93

2.41

6

1.44

1.58

1.98

2.48

7

1.47

1.61

2.03

2.54

Для стальных и винипластовых воздуховодов βш= 1. Более подробные значения βшможно найти в таблице 22.12 [1]. С учетом данной поправки уточненные потери давления на трениеRlβш, Па, получаются умножениемRlна величину βш.

Затем определяется динамическое давление на участке , Па. Здесь ρв– плотность транспортируемого воздуха, кг/м3. Обычно принимают ρв= 1.2 кг/м3.

Далее на участке выявляются местные сопротивления, определяются их коэффициенты (КМС) ξ и вычисляется сумма КМС на данном участке (Σξ). Все местные сопротивления заносятся в ведомость по следующей форме:

ВЕДОМОСТЬ КМС СИСТЕМЫ ВЕНТИЛЯЦИИ

(КОНДИЦИОНИРОВАНИЯ ВОЗДУХА)

№ уч-ка

Местные сопротивления



1

1.

2.

2

1.

2.

И т.д.

В колонку «местные сопротивления» записываются названия сопротивлений (отвод, тройник, крестовина, колено, решетка, плафон, зонт и т.д.), имеющихся на данном участке. Кроме того, отмечается их количество и характеристики, по которым для этих элементов определяются значения КМС. Например, для круглого отвода это угол поворота и отношение радиуса поворота к диаметру воздуховода r/d, для прямоугольного отвода – угол поворота и размеры сторон воздуховодаaиb. Для боковых отверстий в воздуховоде или канале (например, в месте установки воздухозаборной решетки) – отношение площади отверстия к сечению воздуховодаfотв/fо. Для тройников и крестовин на проходе учитывается отношение площади сечения прохода и стволаfп/fси расхода в ответвлении и в стволеLо/Lс, для тройников и крестовин на ответвлении – отношение площади сечения ответвления и стволаfп/fси опять-таки величинаLо/Lс. Следует иметь в виду, что каждый тройник или крестовина соединяют два соседних участка, но относятся они к тому из этих участков, у которого расход воздухаLменьше. Различие между тройниками и крестовинами на проходе и на ответвлении связано с тем, как проходит расчетное направление. Это показано на следующем рисунке.

Здесь расчетное направление изображено жирной линией, а направления потоков воздуха – тонкими стрелками. Кроме того, подписано, где именно в каждом варианте находится ствол, проход и ответвление тройника для правильного выбора отношений fп/fс,fо/fсиLо/Lс. Отметим, что в приточных системах расчет ведется обычно против движения воздуха, а в вытяжных – вдоль этого движения. Участки, к которым относятся рассматриваемые тройники, обозначены галочками. То же самое относится и к крестовинам. Как правило, хотя и не всегда, тройники и крестовины на проходе появляются при расчете основного направления, а на ответвлении возникают при аэродинамической увязке второстепенных участков (см. ниже). При этом один и тот же тройник на основном направлении может учитываться как тройник на проход, а на второстепенном – как на ответвление с другим коэффициентом.

Примерные значения ξ [1] для часто встречающихся сопротивлений приведены ниже. Решетки и плафоны учитываются только на концевых участках. Коэффициенты для крестовин принимаются в таком же размере, как и для соответствующих тройников.

studfiles.net

Стандартные размеры воздуховодов круглого сечения. Прямоугольные воздуховоды

Воздуховоды изготовлены из оцинкованной стали в соответствии с требованиями ТУ 4863-001-75263987-2005 и СНиП 2.04.05-91 вып. 1998 г. на оборудовании фирм «Twin Seam» (Дания), RAS (Германия), «Firmac» (UK) без нарушения цинкового покрытия на фальцевом соединении.

Герметичность всех воздуховодов — класс «П» (плотные). Соединение - фланцевое, на шине с герметизирующей прокладкой. Для больших размеров предусмотрена дополнительная жесткость.

Обращаем Ваше внимание, что использование прямоугольных воздуховодов периметром до 1600 мм значительно повышает стоимость монтажных работ. Практически всегда возможна их замена на круглые, что гораздо экономичнее (см. «Технический комментарий »).

Все воздуховоды с соотношениями сторон более чем 1:3 имеют дополнительную жесткость.

Подсос воздуха в воздуховодах через неплотности, м³/час через 1 м² площади поверхности при избыточном (отрицательном) давлении

Давление, кПа

0.5 1.0 1.5 2 2.5 3 3.5 4 4.5 5.0

Норма по СНиП 2.04.05.-91 для класса «П» (плотные воздуховоды)

1.9 3.5 4.4 5.7 6.6 7.5 8.2 9.1 9.9 10.6

Участок сети прямоугольного сечения

0.45 0.50 0.63 0.70 0.83 0.90 1.00 1.10 1.17 1.22

Особенности прямоугольных воздуховодов

В системах общего воздухообмена и специализированной вентиляции первыми были использованы воздуховоды именно с прямоугольной формой сечения. И хотя такие вентканалы неуклонно уступают свои позиции круглым аналогам, тем не менее, во многих жилых, бытовых, общественных и производственных помещениях по-прежнему можно видеть прямоугольные вентиляционные сети. Объясняется это тем, что оборудование для производства круглых воздуховодов обходится на один-два порядка дороже, и далеко не каждый может позволить инвестировать в бизнес подобную сумму. Хотя и изготовление воздуховодов прямоугольного сечения обходится недешево. Большой расход металла и меньшая технологичность производственного процесса определенным образом сказываются и на цене изделий.

Изначально прямоугольные воздуховоды были унифицированы по размерам, но когда оборудование для их производства стало доступно малому и среднему бизнесу, начался массовый выпуск индивидуальных конфигураций, и сегодня о стандартизации типоразмерного ряда говорить не приходится. С одной стороны это может оказаться полезным в проектировании вентиляции для объектов с ограниченными возможностями размещения оборудования, но с другой, отсутствие унификации значительно усложняет подбор стандартных фасонных изделий и сетевого оборудования для вентиляционной сети.

Современная альтернатива

Современные технологии позволяют изготавливать дешевые и качественные воздуховоды круглого сечения, обладающие рядом неоспоримых преимуществ. Поэтому при любом проектировании вентиляции нужно стараться максимально применять круглые воздуховоды (прямые участки и фасонные изделия). Иногда даже выгодно один прямоугольный участок сети заменять двумя круглыми вентиляционными магистралями, проложенными параллельно.

Преимущества и недостатки

В качестве преимущества воздуховодов прямоугольных перед круглыми можно выделить то, что они более органично вписываются в интерьер, их проще вписать в угол под потолком, но на этом видимые достоинства оканчиваются.

С середины 60-х годов началась новая эра производства вентиляционных труб: кроме традиционных изделий прямоугольного сечения появились круглые. Лишь с конца 70-х воздухообменом в помещениях заинтересовались ученые и уже через 10 лет диаметры воздуховодов стали стандартизировать. Сегодня выбор труб для вентиляции может удовлетворить любые потребности. Дело за малым: какие трубы лучше выбрать и как правильно рассчитать параметры вентиляции.

Требования к вентиляционным трубам

Приточные и вытяжные трубы для вентиляции должны удовлетворять следующим требованиям:

  • герметичность;
  • уровень аэродинамического гула, не превышающий санитарные нормы;
  • должны обес

mirhat.ru

Типоразмеры воздуховодов прямоугольные. Воздуховоды систем вентиляции

Номограмма для быстрого подбора диаметра приведена на рисунке ниже. Способ пользования номограммой показан стрелками. Промежуточные диаметры не подписаны.

Если предусматриваются квадратные воздуховоды, вычисляется сторона квадрата

, мм, которая округляется до 50 мм. Минимальный размер стороны равен 150 мм, максимальный – 2000 мм. При использовании номограммы получаемый по ее данным ориентировочный диаметр следует умножить на

. При необходимости применения прямоугольных воздуховодов размеры сторон подбираются также по ориентировочному сечению, т.е. чтобыa×b≈f ор, но с учетом того, что отношение сторон, как правило, не должно превышать 1:3. Минимальное прямоугольное сечение составляет 100×150 мм, максимальное – 2000×2000, шаг – 50 мм, так же, как и у квадратных.

2.2. Расчет аэродинамических сопротивлений.

После выбора диаметра или размеров сечения уточняется скорость воздуха:

, м/с, гдеf ф – фактическая площадь сечения, м 2 . Для круглых воздуховодов

, для квадратных

, для прямоугольныхм 2 . Кроме того, для прямоугольных воздуховодов вычисляется эквивалентный диаметр

, мм. У квадратных эквивалентный диаметр равен стороне квадрата.

Можно также воспользоваться приближенной формулой

. Ее погрешность не превышает 3 – 5%, что достаточно для инженерных расчетов. Полные потери давления на трение для всего участкаRl, Па, получаются умножением удельных потерьRна длину участкаl. Если применяются воздуховоды или каналы из других материалов, необходимо ввести поправку на шероховатость β ш. Она зависит от абсолютной эквивалентной шероховатости материала воздуховода К э и величиныv ф.

Абсолютная эквивалентная шероховатость материала воздуховодов :

Значения поправки βш :

β ш при значениях К э, мм

Для стальных и винипластовых воздуховодов β ш = 1. Более подробные значения β ш можно найти в таблице 22.12 . С учетом данной поправки уточненные потери давления на трениеRlβ ш, Па, получаются умножениемRlна величину β ш.

Затем определяется динамическое давление на участке

, Па. Здесь ρ в – плотность транспортируемого воздуха, кг/м 3 . Обычно принимают ρ в = 1.2 кг/м 3 .

ВЕДОМОСТЬ КМС СИСТЕМЫ ВЕНТИЛЯЦИИ

(КОНДИЦИОНИРОВАНИЯ ВОЗДУХА)

№ уч-ка

Местные сопротивления

В колонку «местные сопротивления» записываются названия сопротивлений (отвод, тройник, крестовина, колено, решетка, плафон, зонт и т.д.), имеющихся на данном участке. Кроме того, отмечается их количество и характеристики, по которым для этих элементов определяются значения КМС. Например, для круглого отвода это угол поворота и отношение радиуса поворота к диаметру воздуховода r/d, для прямоугольного отвода – угол поворота и размеры сторон воздуховодаaиb. Для боковых отверстий в воздуховоде или канале (например, в месте установки воздухозаборной решетки) – отношение площади отверстия к сечению воздуховодаf отв /f о. Для тройников и крестовин на проходе учитывается отношение площади сечения прохода и стволаf п /f с и расхода в ответвлении и в стволеL о /L с, для тройников и крестовин на ответвлении – отношение площади сечения ответвления и стволаf п /f с и опять-таки величинаL о /L с. Следует иметь в виду, что каждый тройник или крестовина соединяют два соседних участка, но относятся они к тому из этих участков, у которого расход воздухаLменьше. Различие между тройниками и крестовинами на проходе и на ответвлении связано с тем, как проходит расчетное направление. Это показано на следующем рисунке.

Здесь расчетное направление изображено жирной линией, а направления потоков воздуха – тонкими стрелками. Кроме того, подписано, где именно в каждом варианте находится ствол, проход и ответвление тройника для правильного выбора отношений f п /f с,f о /f с иL о /L с. Отметим, что в приточных системах расчет ведется обычно против движения воздуха, а в вытяжных – вдоль этого движения. Участки, к которым относятся рассматриваемые тройники, обозначены галочками. То же самое относится и к крестовинам. Как правило, хотя и не всегда, тройники и крестовины на проходе появляются при расчете основного направления, а на ответвлении возникают при аэродинамической увязке второстепенных участков (см. ниже). При этом один и тот же трой

mirhat.ru